 «Решение систем линейных уравнений методом Гаусса»
Цель: Решая предоставленные задания, изучить решение систем линейных уравнений методом Гаусса	
Задачи:
Разработать программу, решающую системы линейных уравнений методом Гаусса
Решить предоставленные задачи
Код программы:
function gauss_Stand(a,q) {
 let time = Date.now();
 const n = a.length;
 let x = [];
 //Приведение матрицы к треугольному виду
 for (let i = 0; i < n; i++) {
 let tmp = a[i][i];
 for (let j = 0; j <= n; j++) {
 a[i][j] = (a[i][j]/tmp);
 }
 for (let k = i + 1; k < n; k++) {
 for (let j = i+1; j < (n+1); j++) {
 a[k][j] = (a[k][j]-(a[i][j] * a[k][i]));
 }
 }
 }
 //Обратный ход
 x[n - 1] = +(a[n - 1][n] / a[n - 1][n - 1]).toFixed(q);
 for (let i = n - 2; i >= 0; i--) {
 let sum=0;
 for (let j = i + 1; j < n; j++) {
 sum += a[i][j] * x[j];
 }
 x[i] = +(a[i][n] - sum).toFixed(q);
 }
 console.log("Время выполнения: ",((Date.now() - time)/100));
 return x;
}

function gauss_Opt(a,q) {
 let time = Date.now();
 //прямой ход
 const n = a.length;
 let x = [];
 for (let i = 0; i < n; i++) {
 for (let k = i + 1; k < n; k++) {
 let temp = a[k][i];
 for (let j = i; j < (n+1); j++) {
 a[k][j] = +(a[k][j]-a[i][j]*(temp/a[i][i])).toFixed(q);
 }
 }
 }
 //Обратный ход
 x[n - 1] = +(a[n-1][n] / a[n - 1][n - 1]).toFixed(q);
 for (let i = n - 2; i >= 0; i--) {
 let sum=0;
 for (let j = i + 1; j < n; j++) {
 sum += a[i][j] * x[j];
 }
 x[i] = +((a[i][n] - sum)/a[i][i]).toFixed(q);
 }
 console.log("Время выполнения: ",((Date.now() - time)/100));
 return x;
}

function gauss_Stolb(a,q){
 const n = a.length;
 for (let j=0; j<n; j++){
 //Поиск максимального элемента в первом столбце
 let max = Math.abs(a[j][j]);
 let i = j;
 for(let m = j; m<n; m++) {
 if (Math.abs(a[m][j]) > max) {
 i = m;
 max = Math.abs(a[m][j]);
 }
 }

 if (i != j){
 // перестановка i-ой строки, содержащей главный элемент j-ой строки
 let tmp = a[j];
 a[j]=a[i];
 a[i]=tmp;

 }
 }

 return gauss_Stand(a,q);
}

function gauss_Strok(a, q) {
 const n = a.length;
 let aTmp=[];
 for(let i=0; i<=n; i++){
 aTmp[i]=i+1;
 }
 a.push(aTmp);
 for (let i=0; i<=n; i++){
 //Поиск максимального элемента в строке
 let max = Math.abs(a[i][i]);
 for (let j=i;j<n-1;j++){
 max = a[i][j]>max ? Math.abs(a[i][j]) : max;
 }
 let numMax = a[i].indexOf(max);
 if (numMax != i){
 // перестановка j-го столбца, содержащей главный элемент k=i-ой строки
 for (let k=0;k<=n;k++) {
 let tmp = a[k][i];
 a[k][i] = a[k][numMax];
 a[k][numMax] = tmp;
 }
 }
 }
 let numer = a.pop();
 numer.pop();
 let res = gauss_Stand(a,q);
 res.push(numer);
 return res;
}

function gauss_StrokAndStolb(a,q) {
 const n = a.length;
 for (let j=0; j<n; j++){
 //Поиск максимального элемента в первом столбце
 let max = Math.abs(a[j][j]);
 let i = j;
 for(let m = j; m<n; m++) {
 if (Math.abs(a[m][j]) > max) {
 i = m;
 max = Math.abs(a[m][j]);
 }
 }

 if (i != j){
 // перестановка i-ой строки, содержащей главный элемент j-ой строки
 let tmp = a[j];
 a[j]=a[i];
 a[i]=tmp;

 }
 }
 let aTmp=[];
 for(let i=0; i<=n; i++){
 aTmp[i]=i+1;
 }
 a.push(aTmp);
 for (let i=0; i<=n; i++){
 //Поиск максимального элемента в строке
 let max = Math.abs(a[i][i]);
 for (let j=i;j<n-1;j++){
 max = a[i][j]>max ? Math.abs(a[i][j]) : max;
 }
 let numMax = a[i].indexOf(max);
 if (numMax != i){
 // перестановка j-го столбца, содержащей главный элемент k=i-ой строки
 for (let k=0;k<=n;k++) {
 let tmp = a[k][i];
 a[k][i] = a[k][numMax];
 a[k][numMax] = tmp;
 }
 }
 }
 let numer = a.pop();
 numer.pop();
 let res = gauss_Stand(a,q);
 res.push(numer);
 return res;
}

function gauss_jord(a,q) {
 let time = Date.now();
 const n = a.length;
 let x =[];
 //Приведение матрицы к диагональномму виду
 for (let i = 0; i < n; i++) {
 let tmp = a[i][i];
 for (let j = i; j <= n; j++) {
 a[i][j] = (a[i][j]/tmp).toFixed(q);
 }
 for (let l = i+1; l < n; l++) {
 tmp = a[l][i];
 for (let j = i+1; j <= n; j++) {
 a[l][j] = +(a[l][j]-a[i][j] * tmp).toFixed(q);
 }
 a[l][i]=Number(0).toFixed(q);
 }
 }
 for (let i=(n-2); i>=0; i--) {
 let sum = 0;
 for (let j = (n-1); j > i; j--) {
 sum+=Number(a[i][j]);
 a[i][j]=Number(0).toFixed(q);
 }
 a[i][n]=(a[i][n]-sum).toFixed(q);
 }

 //Обратный ход
 x[n - 1] = +(a[n - 1][n] / a[n - 1][n - 1]).toFixed(q);
 for (let i = n - 2; i >= 0; i--) {
 let sum=0;
 for (let j = i + 1; j < n; j++) {
 sum += a[i][j] * x[j];
 }
 x[i] = +(a[i][n] - sum).toFixed(q);
 }
 console.log("Время выполнения: ",((Date.now() - time)/100));
 return x;
}
Входные данные:
1) [[5,7,6,5,23],
 [7,10,8,7,32],
 [6,8,10,9,33],
 [5,7,9,10,31]]
2) [[5,7,6,5,23.1],
 [7,10,8,7,31.9],
 [6,8,10,9,32.9],
 [5,7,9,10,31.1]]
Результаты вычислений:
	Стандартный метод Гаусса:
1) Время выполнения: 0, [1, 1, 1, 1]
2) Время выполнения: 0, [14.6, -7.2, -2.5, 3.1]
Оптимальный метод Гаусса:
1) Время выполнения: 0.01, [1, 1, 1, 1]
2) Время выполнения: 0, [14.6, -7.2, -2.5, 3.1]
Метод Гаусса-Жордана:
1) Время выполнения: 0.01, [1, 1, 1, 1]
2) Время выполнения: 0.01, [1.02, -0.2, 0.65, 3.1]
Метод Гаусса c выбором главного элемента по столбцам:
1) Время выполнения: 0, [1, 1, 1, 1]
2) Время выполнения: 0,[14.6, -7.2, -2.5, 3.1]
Метод Гаусса c выбором главного элемента по строкам:
1) Время выполнения: 0, [1, 1, 1, 1, [2, 3, 1, 4]]
2) Время выполнения: 0, [-7.2, -2.5, 14.6, 3.1, [2, 3, 1, 4]]
Метод Гаусса c выбором главного элемента по строкам и столбцам:
1) Время выполнения: 0, [1, 1, 1, 1, [2, 3, 4, 1]]
2) Время выполнения: 0, [-7.2, -2.5, 3.1, 14.6, [2, 3, 4, 1]]
[bookmark: _GoBack]
