РГПУ имени А.И. Герцена
Институт Компьютерных Наук и Технологического Образования
Информатика и вычислительная техника
Работу выполнил Н.Ю. Бахурев

Лабораторная работа №3.
Практическое знакомство с потоками и синхронизацией потоков ОС UNIX
Цель работы: Ознакомиться с подсистемой управления потоками в операционной системе Unix и основными программными средствами для создания, управления и удаления потоков.
Задание: Изучить основные программные средства управления потоками ОС Unix, а также способы синхронизации потоков. Разработать приложения для многопоточных вычислений с использованием синхронизации посредством мьютексов, семафоров и условных переменных.
Задание 1.
В программе имеются два потока, один поток получает введенную в консоль информацию и записывает ее в текстовый документ, второй поток , при запросе от пользователя, выводит содержимое того же документа на экран. Синхронизация с помощью мьютекса[image: C:\Users\iuytr\AppData\Local\Microsoft\Windows\INetCache\Content.Word\3LR-1.png]

Enter a string (enter to quit):
test1
Enter a string (enter to quit):
test2
Enter a string (enter to quit):
test3
Enter a string (enter to quit):
r
test1
test2
test3
r
Enter a string (enter to quit):
The threads are stopped









Задание 2.
Во второй программе первый поток добавляет к общей переменной 10 а второй поток отнимает 5, после завершения одного цикла потока поток приостанавливается и начинает действие другой поток. Синхронизация с использованием семофора. [image: C:\Users\iuytr\AppData\Local\Microsoft\Windows\INetCache\Content.Word\3LR-2-2.png][image: C:\Users\iuytr\AppData\Local\Microsoft\Windows\INetCache\Content.Word\3LR-2-1.png]
-5
5
0
10
5
15
25
20
30
25
35
30
40
35
45
40
50
The threads are stopped














Задание 3.
В данной программе два потока, с разной частотой, изменяют значение общей переменной, один поток прибавляет 1, другой отнимает 1, первый поток имеет в 2 раза большею частоту. Синхронизация с использованием условных переменных. [image: C:\Users\iuytr\AppData\Local\Microsoft\Windows\INetCache\Content.Word\3LR-3-1.png]


1 2 1 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10
Задание 4.
Убедиться в результативности применения средств синхронизации потоков, сравнив результаты работы программ с использованием и без использования средств синхронизации
Во второй программе были убраны семофоры, следовательно, потоки получились асинхронные, потоки работают в произвольном порядке, в результате чего мы не можем гарантировать правильность работы приложения, в некоторых случаях это приводит к ошибке приложения или зацикливанию потока[image: C:\Users\iuytr\AppData\Local\Microsoft\Windows\INetCache\Content.Word\3LR-4-1.png].

-5
0
-5
-10
-15
-20
-255
-15
-5
5
15
25
35
45
55
The threads are stopped

[bookmark: _GoBack]Выводы
В ходе данной лабораторной работы были получены навыки работы с потоками которые помогают оптимизировать работу приложения, и в некоторых случаях повысить скорость работы приложения. Так же изучены основные методы для синхронизации потоков, которые помогают избежать ошибочной работы много поточных программ.

2017
image7.png
pthread nutex_init(&mutex,0);
pthread_cond_init(&cond,0);
pthread t t1;
pthread t t2;
pthread _create(&t1,NULL, funcl,NULL);
pthread _create(&t2,NULL, func2,NULL) ;
pthread join(t1, NULL);

pthread cancel(t2);

pthread nutex_destroy (&nutex);
pthread cond_ destroy (&cond) ;





image8.png
S [pwa Ba Jwmaw Cgew Hepoka Crowe

DR ed=ee~yd Hin) KA
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <semaphore.h>

int s;
void* thread_func(void *arg) {
while(s<50){
5-=5;
printf("%i",s);
printf("\n");
}
¥
void* thread funcl(void *arg) {
while(s<50){
s+=10;
printf("%i",s);
printf("\n");
}





image9.png
S [pwa Ba Jwmaw Cgew Hepoka Crowe

NEEa=wevyd HiD)

5-=5;
printf("si®,s);
printf("\n");
}
}
void* thread funcl(void *arg) {
while(s<50){
5+=10;
printf("i",s);
printf("\n");
}

}
int main(int argc, char* argv[]) {
pthread t thread;
pthread t threadl;
pthread create(sthread, NULL, thread func, NULL);
pthread create(sthreadl, NULL, thread funcl, NULL);
pthread join(thread, NULL);
printf(*The threads are stopped\n");
return EXIT SUCCESS;

—————— =




image1.png
taski-L- KWite
S [pwa Ba Jwmaw Cgew Hepoka Crowe

D@ E8]=0vsd HRRKIAR

[#include <stdlib.h>

#inctude <pthread.h>
#include <string. h>
pthread_nutex_t lock;
FILE *strean;
void: thread func(void *arg) {
[pthread_nutex_lock(slock) ;
strean = fopen(*test’, "w');
if (strean = (FILE *}0) {
fprintf (stderr, "Error opening filewn');
exit (1);
}
char striso];
do {
printf(*Enter a string (enter to quit):\n");
gets(str);
straat(str, "\n");
fputs(str, strean);
f(sstr=="r){
pthread_nutex_unlock(slock);
steep(2);
pthread mutex lock(slock);

} while(*stri="\n');





image2.png
* raski - KWite
S [pwa Ba Jwmaw Cgew Hepoka Crowe

D @ 0e™dHR)KIAK

void thread_funcl(void *arg) {
sleep(2);

char strifsool;

while(1<h){
pthread mutex lock(slock);
felose(stream)

strean = fopen(test”, "r);

while(fgets(str1, 100, stress)

printf(“ss®, strl);

felose(stream);
strean = fopen(“test”, "w');
pthread mutex unlock(&lock);
sleep(2];
¥
3
int main(int arge, chart argu(]) {
pthread t thread;
pthread ¢ threadi;
pthread create(sthread, NULL, thread func, WLL);
pthread create(sthreadi, WL, thread_funcl, NLL);
pthread join(thread, MIL);
pthread_cancel(thread);
printf(The threads are stopped\n’);
return BXIT SUCCESS;





image3.png
S [pwa Ba Jwmaw Cgew Hepoka Crowe

)jB Bl = Qe HiDY

void* thread_funcl(void *arg) {

while(s<50){

sem wait(&sem);

s5+=10;

printf("%i",s);

printf("\n");

sem_post(&sem) ;

sleep(1);

n

int main(int argc, char* argv(l) {
sem_init(&sem,0,0);

sem _post(&sem);

pthread t thread;

pthread t threadl;

pthread _create(sthread, NULL, thread_func, NULL);
pthread_create(sthreadl, NULL, thread funcl, NULL);
pthread join(thread, NULL);

printf("The threads are stopped\n”);

return EXIT SUCCESS;

Wi

————— =





image4.png
S [pwa Ba Jwmaw Cgew Hepoka Crowe

LEEd=oevys HNKIAKX
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <semaphore.h>
sen t sen;
ints;
void* thread_func(void *arg) {
while (s<50){ S
sem_wait(&sem);
5-=5;
printf("%i",s);
printf("\n");
sem _post(&sem);
sleep(1);
}
¥
void* thread_funcl(void *arg) {
while(s<50){
sem_wait(&sem);
s+=10;





image5.png
T

NEEa=wevyd HiD)

#include
#include
#include
#include
#include
#include
int z;
pthread m
pthread c
void* fun
{

wh;

{

}

B Bwmaw Cgen Hepora Crowe

<stdlib.h>
<stdio.h>
<pthread.h>
<string.h>
<semaphore.h>
<error.h>

utex_t mutex;
ond t cond;
cl(void farg)

ile(z<10)

pthread mutex_lock(&mutex);
pa
printf("%i",2);
printf(* “);
pthread cond signal(&cond);
pthread_cond wait(&cond, &mutex);
pthread mutex_unlock(&mutex) ;

}

—————— =





image6.png
S [pwa Ba Jwmaw Cgew Hepoka Crowe

DR Ed =0 +~vdq HDKAQ
void* func2(void *arg)
{
while (1)
{
pthread mutex_lock(&mutex) ;
pthread_cond_signal(&cond);
pthread_cond wait(&cond, &mutex);
o
printf("si",z);
printf(" *);
pthread_cond_signal(&cond);
pthread _cond wait(&cond, &mutex);
pthread_mutex_unlock(&mutex);





