РГПУ имени А.И. Герцена
Институт Компьютерных Наук и Технологического Образования
Информатика и вычислительная техника
Работу выполнил Н.Ю. Бахурев

Лабораторная работа №2.
Практическое знакомство со стандартной утилитой GNU make для построения проектов в ОС UNIX
Цель работы: Ознакомиться с техникой компиляции программ на языке программирования C (C++) в среде ОС семейства Unix, а также получить практические навыки использования утилиты GNU make для сборки проекта.
Задание: Изучить особенности работы с утилитой make при создании проекта на языке С (С++) в ОС Unix, а также получить практические навыки использования утилиты GNU make при создании и сборке проекта.
Задание 1.
Используя любой текстовый редактор, создать простейшую программу на языке C (C++) с использованием, как минимум, двух исходных файлов (с программным кодом).
[image:]

Задание 2.
Для автоматизации сборки проекта утилитой make создать make-файл.
[image:]

Задание 3.
Выполнить программу (скомпилировать, при необходимости отладить).
[image:]

Задание 4.
Показать, что при изменении одного исходного файла и последующем вызове make будут исполнены только необходимые команды компиляции.
При изменении одного файла и последующей сборки всей программы, происходит перекомпиляция только одного файла, в нашем случае file2.c
[image:]

Задание 5.
Создать make-файл с высоким уровнем автоматизированной обработки исходных файлов программы согласно следующим условиям: имя скомпилированной программы (выполняемый или бинарный файл), флаги компиляции и имена каталогов с исходными файлами и бинарными файлами (каталоги src, bin и т. п.) задаются с помощью переменных в makefile.
зависимости исходных файлов на языке C (С++) и цели в make-файле должны формироваться динамически;
наличие цели clean, удалающей временные файлы
[image:]
[image:]

Make-файл был значительно автоматизирован и стал более универсален. Здесь использованы функция wildcard, которая получает список файлов с заданным шаблоном в выбранном каталоге, и функция patsubst, которая заменяет заданную подстроку в заданной строке. Эти функции позволяют автоматически построить список объектных файлов программы. Еще в данном Make-файле автоматизирован поиск исходных файлов по нескольким директорием с использованием переменных search _wildcard s и VPATH.
Выводы
В ходе данной лабораторной работы была изучена утилита Make, которая позволяет собирать программу из множества разрозненных файлов. Данная утилита имеет большое количество возможностей по автоматизации сборки проекта и позволяет создать такой Make-файл, который подойдет ко многим программам и при сборке каждой из них потребует незначительное количество изменений. Была использована сборка knoppix и Oracle VirtualBox.
[bookmark: _GoBack]
2017
image1.png
filelic —Kirite.

v w2 Ban 3avemw Cepowc Hacmoiia Crosea

IR gy
void main() i
ESE 04 E8 e 8lev 4 IRRIAR

#include <stdio.h>

Tma nyFune (int. p) {
int tap = p;

tnp = tmp * 2;
A s O

image2.png
T —,

D@ Ed & e~vd Dy
iedit: filez o filel o
oo FiRet 5 Filed o o inait
eitez oFRuere © 21
e o
eitet o Hieie
gee —c filel.o|

image3.png
1) Shell - Konsole = o %

v Mo Bua Swmam Himoia Copesra

make
acc -c filel.c
aec filel.o file2.o -o iEdit

iEdit
Result: 10

celar
bash: celar: command not found

clear

Is
filel.c filel.o file2.c” makefile”
filel.c” fileZ.c file2.o makefile

clear

image4.png
Sl = stz

Cowc Mpaoxa Bun Samms Hamoia Copsssa

Dpaexa Ban Samm Copove

Y= =N AERIE %)

makefile #include <stdio. h>

void myFunc (int p) {
int tp = p;

tap = tap * 4;

printf ("Result: 2din’, tp) ;
)

Heeoiica

ok

Crpasa

image5.png
% makefile ~ KWrite <2>

Do [pas Ban wmow Cepec

Heepoia Copaera.

DGl e~yd DX aQ

override compile_flags = -pipe

nene := myFile

src_dir := src

bindir ‘= bin
rch_vildcard o

§laddsuf£ix /6§ (nane) , § (hin_dix))

= §(addsuffix /+ c,§(src_dir))

§(notdir §(patsubst %.c, % 0,8 (wildcard §(search_wildcard s))))

goo “o 58 5
nake clean
=S (sro_dix)

e
goo o 5

veaTH
e

Elean
m -f *.0 § (name)

image6.png
7 Sheil “Kansale 5%

S ——

make
goc —c sro/filel.c
gcc —c src/file2.c
cc -0 bin/muFile filel.o file2.o
make clean
make[11: Entering directory '/ramdisk/home/knoppix/LR2/ task2
m - *.0 muFile i
ke[11: Leaving directory /ramdisk/home/knoppix/LR2/task2
cd bin
Is

muFile

