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Лабораторная работа №2.
Практическое знакомство со стандартной утилитой GNU make для построения проектов в ОС UNIX
Цель работы: Ознакомиться с техникой компиляции программ на языке программирования C (C++) в среде ОС семейства Unix, а также получить практические навыки использования утилиты GNU make для сборки проекта.
Задание: Изучить особенности работы с утилитой make при создании проекта на языке С (С++) в ОС Unix, а также получить практические навыки использования утилиты GNU make при создании и сборке проекта.
Задание 1.
Используя любой текстовый редактор, создать простейшую программу на языке C (C++) с использованием, как минимум, двух исходных файлов (с программным кодом).
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Задание 2.
Для автоматизации сборки проекта утилитой make создать make-файл.
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Задание 3.
Выполнить программу (скомпилировать, при необходимости отладить).
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Задание 4.
Показать, что при изменении одного исходного файла и последующем вызове make будут исполнены только необходимые команды компиляции.
При изменении одного файла и последующей сборки всей программы, происходит перекомпиляция только одного файла, в нашем случае file2.c
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Задание 5.
Создать make-файл с высоким уровнем автоматизированной обработки исходных файлов программы согласно следующим условиям: имя скомпилированной программы (выполняемый или бинарный файл), флаги компиляции и имена каталогов с исходными файлами и бинарными файлами (каталоги src, bin и т. п.) задаются с помощью переменных в makefile.
зависимости исходных файлов на языке C (С++) и цели в make-файле должны формироваться динамически;
наличие цели clean, удалающей временные файлы
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Make-файл был значительно автоматизирован и стал более универсален. Здесь использованы функция wildcard, которая получает список файлов с заданным шаблоном в выбранном каталоге, и функция patsubst, которая заменяет заданную подстроку в заданной строке. Эти функции позволяют автоматически построить список объектных файлов программы. Еще в данном Make-файле автоматизирован поиск исходных файлов по нескольким директорием с использованием переменных search _wildcard s и VPATH.
Выводы
В ходе данной лабораторной работы была изучена утилита Make, которая позволяет собирать программу из множества разрозненных файлов. Данная утилита имеет большое количество возможностей по автоматизации сборки проекта и позволяет создать такой Make-файл, который подойдет ко многим программам и при сборке каждой из них потребует незначительное количество изменений. Была использована сборка knoppix и Oracle VirtualBox.
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