Лабораторная работа №7.
Задание 1.
1. Тема: итерационные циклические вычислительные процессы с управлением по функции.
2. Цель: научиться реализовывать итерационные циклические вычислительные процессы с управлением по функции средствами FreePascal.
3. Используемое оборудование: ПК, среда программирования Lazarus.
4. Постановка задачи: вычислить 2 в степени n и при этом определить первое значение степени, при котором результат будет превышать значение 1000.
5. Математическая модель:
Просто умножаем двойку саму на себя такое кол-во раз, какое нам нужно.

6. Блок-схема:
[bookmark: _GoBack]

7. Список идентификаторов:
	Имя
	Тип
	Смысл

	n
	integer
	степень

	i
	integer
	счетчик

	nT
	integer
	Логическая проверка и степень, в которую нужно возвести, чтобы получить больше 1000

	itog
	real
	2 в степени n

	k
	integer
	Проверка во второй программе

8. Код программы:

1-ый способ (более адекватный):
program lr7_task1;

var
 n,i,nT : integer;
 itog : real;

begin
 itog := 1;
 nT := 0;
 writeln('Vvedite N: '); readln(n);

 for i := 1 to n do begin
 itog := itog * 2;
 if (itog > 1000) and (nT = 0) then begin
 nT := i;
 writeln('Pervoe Znachenie N, pri kotorom Itog > 1000 = ',nT);
 end;
end;

 writeln('Resultat Raven : ',itog:2:2);
 readln();
end.

2-ой способ:
program lr7_task1_2;
var
n, k,i:integer;
itog:real;
begin
k:=1;
i:=0;
writeln('Vvedite stepen'); readln(n);
repeat
k:=2*k;
i:=i+1;
 if k>1000 then begin
 writeln('Stepen pri kotoroy k>1000 = ', i); break;
 end;
until i>n;
itog:=exp(n*ln(2));
writeln(' itog = ',itog:2:0);
readln()
end.

1.
2.
3.
4.
5.
6.
7.
9. Результат работы программы:
[image:]

10. Анализ результатов вычисления:
В цикле с параметром, мы умножаем переменную, изначально равную 1, на 2. Потом при помощи доп. Переменной проверяем, какое первое значение n, чтобы 2 в степени n было больше 1000.
11. Вывод: программа работает корректно.

Задание 2.
1. Тема: итерационные циклические вычислительные процессы с управлением по функции.
2. Цель: научиться реализовывать итерационные циклические вычислительные процессы с управлением по функции средствами FreePascal.
3. Используемое оборудование: ПК, среда программирования Lazarus.
4. Постановка задачи: Решить нелинейное уравнение методом Ньютона на отрезке [-10;10] с точностью 10-6.

5. Математическая модель:
Рассмотрим в точке x0 касательную к кривой y=f(x), задаваемую уравнением:
[image: решения нелинейных уравнений]
Положим y=0, находим точку x1 пересечения касательной с осью абсцисс:
[image: решения нелинейных уравнений]
Построив касательную в точке x1 получаем
[image: решения нелинейных уравнений]
по аналогичной формуле точку x2 пересечения этой касательной с осью x и т.д.:
[image: решения нелинейных уравнений]

6. Блок-схема:

7. Список идентификаторов:
	Имя
	Тип
	Смысл

	eps
	real
	точность

	X
	real
	Текущее x

	Xo
	real
	Первое приближение

	Xnext
	real
	Следующее x

	formula
	real
	Формула

	proizv
	real
	Производная

8. Код программы:
 program lr7_task2;
var eps, X, Xo, Xnext : real;

function formula(per:real):real;
begin
formula := per*per*per-cos(per)+1;
end;

function proizv(per:real):real;
begin
proizv := 3*per*per+sin(per);
end;

begin
eps := 0.00001;
Xo := 10;
X := Xo;
repeat
Xnext := x-formula(x)/proizv(x);
X := Xnext;
writeln(Xnext:2:6);
until abs(formula(x)) <= eps;
writeln(Xnext:2:6);
readln;
end.

8.
9.
10.
11.
12.
13.
14.
9. Результат работы программы:
[image:]

10. Анализ результатов вычисления: задаем первое приближение и точность вычислений. Начинаем цикл с постусловием, в котором проводим вычисления согласно мат.модели.

11. Вывод: программа работает корректно.

Задание 3.
1. Тема: итерационные циклические вычислительные процессы с управлением по функции.
2. Цель: научиться реализовывать итерационные циклические вычислительные процессы с управлением по функции средствами FreePascal.
3. Используемое оборудование: ПК, среда программирования Lazarus.
4. Постановка задачи: с клавиатуры вводится трехзначное число, считается сумма его цифр. Если сумма цифр числа больше 10, то вводится следующее трехзначное число, если сумма меньше либо равна 10 – программа завершается.

5. Математическая модель:
разобьём введённое число на разряды – сотни, десятки, единицы. Сложим значения разрядов. Проведём проверку на то, что сумма цифр меньше либо равна 10. Если нет, то необходимо организовать повторный ввод. Если да, то программа завершается.

6. Блок-схема:

7. Список идентификаторов:
	Имя
	Тип
	Смысл

	n
	integer
	Вводимое число

	sum
	integer
	Сумма цифр числа

	sotni
	integer
	Значение разряда сотен

	des
	integer
	Значение разряда десятков

	ed
	integer
	Значение разряда единиц

8. Код программы:
 program lr7_task3;
var
n,sum, sotni, des, ed : integer;
begin
sum := 0;
 repeat
 writeln('Vvedite trehznachnoe chislo n: ');
 readln(n);
 sotni := n div 100;
 des := n div 10 mod 10;
 ed := n mod 10;
 writeln('sotni: ',sotni,' desyatki: ',des,' edinici: ',ed);
 sum := sotni + des + ed;
 writeln('sum: ',sum);
 writeln;
 if sum > 10 then
 writeln('Summa cifr chisla > 10, poetomu snova');
 until sum <= 10;
 writeln('Summa cifr chisla <= 10, poetomu programma zavershena.');
readln;
end.

15.
16.
17.
18.
19.
20.
21.
9. Результат работы программы:
[image:]

10. Анализ результатов вычисления:
В цикле с постусловием repeat … until, мы каждый раз вводим значение n и обрабатываем его в соответствии с поставленной задачей. Дополнительная проверка if введена, чтобы отобразить комментарий – почему же нам снова приходиться вводить число n.

11. Вывод: мы написали программу, которая получает на вход трехзначное число, считает сумму его цифр. Если сумма цифр числа больше 10, то вводится следующее трехзначное число, если сумма меньше либо равна 10 – программа завершается.
Задание 4.
1. Тема: итерационные циклические вычислительные процессы с управлением по функции.
2. Цель: научиться реализовывать итерационные циклические вычислительные процессы с управлением по функции средствами FreePascal.
3. Используемое оборудование: ПК, среда программирования Lazarus.
4. Постановка задачи: составить программу подсчета суммы факториалов целых чисел, где сумма не превышает число А, которое вводится с клавиатуры. На экран вывести сумму и все слагаемые.

5. Математическая модель:

6. Блок-схема:

7. Список идентификаторов:
	Имя
	Тип
	Смысл

	a
	longint
	Вводимое число. Его не должна превышать сумма факториалов.

	celoeChislo
	integer
	Целые числа, факториалы которых мы вычисляем.

	sum
	real
	Сумма факториалов

	factVar
	real
	Для обращения к функции и вывода возвращенного значения на экран

8. Код программы:
 program lr7_task4_2;
var
 a : longint;
 celoeChislo : integer;
 sum, factVar : real;

function factFunct(chislo:integer):real;
var
vych : real;
j : integer;
begin
 vych := 1;
 for j := 1 to chislo do
 vych := vych * j;
 factFunct := vych;
end;

begin
writeln('Vvedite chislo A, kotorogo ne doljna prevychat summa factorialov: '); readln(a);
sum := 0;
factVar := 1;
celoeChislo := 0;
for celoeChislo := 0 to a do begin
 factVar := factFunct(celoeChislo);
 writeln ('Slagaemoe ',celoeChislo+1,' - Factorial ',celoeChislo,' raven ',factVar:2:1);
 sum := sum + factVar;
 if (sum+factFunct(celoeChislo+1)) > a then break;
end;

writeln ('Summa factorialov : ',sum:2:1);
readln;
end.

22.
23.
24.
25.
26.
27.
9. Результат работы программы:
[image:]

10. Анализ результатов вычисления:
В цикле с постусловием repeat … until, мы каждый раз вводим значение n и обрабатываем его в соответствии с поставленной задачей. Дополнительная проверка if введена, чтобы отобразить комментарий – почему же нам снова приходиться вводить число n.

11. Вывод: мы написали программу, которая получает на вход трехзначное число, считает сумму его цифр. Если сумма цифр числа больше 10, то вводится следующее трехзначное число, если сумма меньше либо равна 10 – программа завершается.
12.

image3.gif
flrg) + (xr —x0) ' (20)

image4.gif
Ty = T —

Slzo)
(o)

image5.png
f(zg)

S

image6.gif
Ty = Tny—

image7.png
eps

an

"

Xnext = xformula(xyproizy(x)
X:=Xnext

<:;xm‘

abs(formula(x) > eps

Her
f Xnext ;

OCTAHOB

\

image8.png

image9.png
sum =0

Wedte
rehznachnoe
chisio

sotni
des

naiv 100
v 10 mod 10
mod 10
i+ des +ed

sotn, des, ed, sum

sum> 10

Her

‘Summa cir
chisia <= 10, postomu
programma

Zavershena

ocTaHOB

‘Summa cir
chisla > 10,
poetomu snova

image10.png
desyatki: 4 edinici: 2

fsunna cifr chisla <= 10, poetomu programma zavershena.

image11.png
factvar
celosChisio

factVar = factFunct(celoeChisio)

factvar

Sum -= sum + factVar

GeloeChisio = celoeChislo +1

celoeChislo <= a

Her

Za

0CTAHOB

function factFunct(chislo)

wyeh:=1

wyeh =vyeh*] j¢—

factFunct

factFunct

image12.png
s 1agaenoe
f1agacnoe
f1agacnoe
f1agacnoe
f1agacnoe
f1agacnoe
f1agacnoe
f1agacnoe

Factorial
Factorial
Factorial
Factorial
Factorial
Factorial

- Factorial

- Factorial

)

1
H
3
1
5
6

?

fsunna factorialoy : 5914.0

1.0
10
2.0
6.0
24.0
120.0
720.0
5040.0

image1.png
ito

<

| itog=itg*2

-
g~ 1000) ana (7= D> 1
Her

OCTAHOB

image2.png
vedite N:
2

ervoe Znachenie N. pri kotoron Itog > 1000
: ab9e.00

